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Pro-inflammatory stimulation of meniscus cells increases production
of matrix metalloproteinases and additional catabolic factors involved
in osteoarthritis pathogenesis
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Objective: Meniscus injury increases the risk of osteoarthritis; however, the biologic mechanism remains
unknown. We hypothesized that pro-inflammatory stimulation of meniscus would increase production
of matrix-degrading enzymes, cytokines and chemokines which cause joint tissue destruction and could
contribute to osteoarthritis development.
Design: Meniscus and cartilage tissue from healthy tissue donors and total knee arthroplasties (TKAs)
was cultured. Primary cell cultures were stimulated with pro-inflammatory factors [IL-1b, IL-6, or
fibronectin fragments (FnF)] and cellular responses were analyzed by real-time PCR, protein arrays and
immunoblots. To determine if NF-kB was required for MMP production, meniscus cultures were treated
with inflammatory factors with and without the NF-kB inhibitor, hypoestoxide.
Results: Normal and osteoarthritic meniscus cells increased their MMP secretion in response to stimu-
lation, but specific patterns emerged that were unique to each stimulus with the greatest number of
MMPs expressed in response to FnF. Meniscus collagen and connective tissue growth factor (CTGF) gene
expression was reduced. Expression of cytokines (IL-1a, IL-1b, IL-6), chemokines (IL-8, CXCL1, CXCL2,
CSF1) and components of the NF-kB and tumor necrosis factor (TNF) family were significantly increased.
Cytokine and chemokine protein production was also increased by stimulation. When primary cell
cultures were treated with hypoestoxide in conjunction with pro-inflammatory stimulation, p65 acti-
vation was reduced as were MMP-1 and MMP-3 production.
Conclusions: Pro-inflammatory stimulation of meniscus cells increased matrix metalloproteinase pro-
duction and catabolic gene expression. The meniscus could have an active biologic role in osteoarthritis
development following joint injury through increased production of cytokines, chemokines, and matrix-
degrading enzymes.

� 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Meniscus injury is known to increase the risk of osteoarthritis.
Untreated meniscus tears have an odds ratio of 5.7 for the devel-
opment of radiographic osteoarthritis1. Even after partial menis-
cectomy, the relative risk (RR) for osteoarthritis increases following
both degenerative tears (RR 7.0) and traumatic tears (RR 2.7)2,3.
Successful repairs may lead to resumption of sports activity and
decreased incidence of osteoarthritis4; however, many tears are not
.M. Ferguson, Department of
e, Medical Center Boulevard,
.
Stone), rloeser@wakehealth.
K.S. Vanderman), dllong@
u (C.M. Ferguson).

s Research Society International. P
amenable to repair secondary to the tissue’s minimal vasculature.
This increased risk is historically attributed to changes in knee
biomechanics due to meniscus deficiency3,5,6.

The impact of cytokine stimulation on articular cartilage and
subsequent extracellular matrix degradation is well documented7e

9; however, the role of the meniscus in this process is unclear. The
knee joint functions as an organ with a shared environment
comprised of cartilage, synovium, ligaments and the meniscus. The
meniscus is consequently exposed to inflammatory factors pro-
duced by knee tissues in response to acute or chronic injury and
this exposure likely impacts meniscus biology. Certain aspects of
meniscus biology are pathologically altered in meniscus injury and
in the development of osteoarthritis10e18. Thus, the meniscus likely
also has a biologic role in osteoarthritis development through the
production of matrix-degrading enzymes and inflammatory
ublished by Elsevier Ltd. All rights reserved.
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factors. We hypothesized that inflammatory factors associated with
joint injury would stimulate menisci to increase production of
matrix-degrading enzymes, cytokines and chemokines which
could contribute to joint tissue destruction and subsequent devel-
opment of osteoarthritis.

Materials and methods

Knee tissue acquisition

Our institutional review board approved this protocol. Normal
human meniscus specimens (n ¼ 18 menisci from n ¼ 18 donors
25e65 years old) were procured through the National Disease and
Research Interchange (NDRI, Philadelphia, PA) or the Gift of Hope
Organ and Tissue Donor Network (Elmhurst, IL) while osteoar-
thritic menisci were obtained from patients undergoing total knee
arthroplasty (TKA) for osteoarthritis (n ¼ 36 menisci from n ¼ 36
donors 44e83 years old). Synovial tissue was removed. Meniscus
tissue was macroscopically graded according to a modified Inter-
national Cartilage Research Society Cartilage Morphology Score
(Table SI). All normal meniscus specimens were a grade zero or one,
while all but one osteoarthritic meniscus was a grade three or four
(one osteoarthritic meniscus received a morphology grade two).
Articular cartilage from TKA bone cuts was processed as previously
described7. All comparisons between chondrocytes and meniscus
cells used tissue from the same donor.

Cell culture

Normal and osteoarthritic human meniscus and articular
chondrocytes were isolated using our laboratory’s tissue digestion
and processing methods and primary cells cultured to confluence
as described7. Prior to stimulation, primary cultures were incubated
overnight in serum-free media (DMEM/F12) and then treated for
either 6 or 24 h with one of the following: 10 ng/ml IL-1b; 10 ng/ml
IL-6 with 25 ng/ml soluble IL-6 receptor; or TGF-a 20 ng/ml (all
from R and D Systems) or fibronectin fragments (FnF), a recombi-
nant fragment of fibronectin protein containing domains 7e10 of
full length fibronectin (at 1 mM; gift from Harold Erickson, Duke
University). For the NF-kB time course study, cells were stimulated
with FnF (1 mM) for 15, 30, 45, 60, or 90 min with and without
30 min pretreatment with the NF-kB inhibitor, hypoestoxide
(25 mM, Sigma). Cell lysates of nuclear and cytoplasmic fractions
collected. Nuclear preparations were processed using the NE-PER
fraction kit (Pierce Scientific) according to the manufacturer’s in-
structions. For additional NF-kB studies, cell cultures were stimu-
lated with cytokines at the aforementioned concentrationwith and
without hypoestoxide (25 mM, Sigma) and cell lysates were
collected and analyzed using immunoblot. Media was collected for
MMP analysis and cells were harvested by scraping in either Trizol
(Invitrogen) for RNA isolation or lysis buffer [lysis buffer (Cell Signal
Technologies) plus Phosphatase Inhibitor Cocktail 2 (Sigma) and
phenylmethanesulfonyl fluoride (Sigma)] for protein analysis.

Gene and protein analysis

RNA was quantified (Nanodrop, ThermoScientific) and verified
(BioAnalyzer Chip, Agilent) to ensure high quality RNA (RIN > 6).
The reverse-transcription PCR generated cDNA (RetroScript Kit,
Ambion). Real-time PCR was performed using the Applied Bio-
systems 7900HT thermocycler with TaqMan Universal PCR Mas-
terMix and TaqMan Gene Assay (Applied Biosystems: mmp1
Hs00899658_m1; mmp3 Hs00968305_m1; GAPDH
Hs02758991_g1). Data was analyzed using the DDCT method in
Microsoft Excel (Microsoft).
For quantitative real-time PCR arrays, RNA was harvested as
above and purified using the RNEasy Mini kit (Qiagen, #74104). The
purified RNA was then used for the extracellular matrix and
adhesion PCR array (SABiosciences, #PAHS-013ZA-12) or NF-kB
target gene PCR array (SABiosciences, #PAHS-225ZA-12) and the
manufacturer’s optimized master-mix (SABiosciences, #330522)
for the Applied Biosystems 7900HT thermocycler according to the
manufacturer’s protocol.

For protein analysis, cell mediawas loaded in equal volumes (1:1
in Lamelli Sample Buffer, 5% b-mercaptoethanol; BioRad), separated
by SDS-PAGE (BioRad), transferred to nitrocellulose (Odyssey, Invi-
trogen) and probed with the primary antibody [anti-MMP1
(PAB12708, Abnova); anti-MMP3 (AB2963, Millipore); anti-MMP8
(MAB3316, Millipore); anti-MMP13 (AB84594, Abcam)] and sec-
ondary antibody (CellSignal). Blots were visualized with chem-
iluminescence (Amersham ECL, GE Life Sciences). Since no known
control exists formeniscus secreted proteins, loadingwas controlled
by loading an equal volume of media fromwells that had equivalent
cell numbers verified by total protein content. Media was analyzed
with an MMP Protein Array (#AAH-MMP-1, RayBiotech) or the
Cytokine Array (#AAH-CYT-5, RayBiotech). For the NF-kB experi-
ments, immunoblots were probed for phosphorylated-p65, then
stripped and probed for total-p65, and then finally b-actin as the
loading control. For nuclear preparations, blots were also probed for
Lamin B (a nuclear protein) and lactate dehydrogenase (a cyto-
plasmic protein) to demonstrate the integrity of the fractions. Pro-
cessed films were imported into Photoshop v7.0 (Adobe) and
labeled. Densitometry was completed with ImageJ 1.44p (NIH).

Statistical analysis

Statistical analysis was performed with SigmaPlot v10.0 (Systat
Software) and Prismv5.02 (GraphPad Software, Inc.). Real-time PCR
arrays were analyzed in Microsoft Excel (Microsoft) using the
standard DDCt method normalized to endogenous housekeeping
genes in array-specific analysis templates (SABiosciences, http://
www.sabiosciences.com/pcrarraydataanalysis.php). The template
employed the Student’s t test for replicates of four individual do-
nors with significance of P � 0.05. We accepted this analysis
method with the understanding that we did not account for mul-
tiple comparisons. A small number of genes may have been found
to be significantly different because of the total number of genes
analyzed; however, this limitation was accepted because we chose
to analyze related genes of either extracellular matrix proteins or
the NF-kB family and the arrays were used for hypothesis genera-
tion within targeted gene families rather than hypothesis testing
for any individual gene.

The effects of cytokine stimulation on MMP-1 and MMP-3 gene
expression in normal and osteoarthritic menisci were compared
using a multivariate analysis of variance (MANOVA). Post-hoc tests
were performed when group effects were found to be significant. A
post-hoc two-tailed Dunnett’s test was performed when appro-
priate to compare cytokine treatments to the unstimulated control,
since we did not attempt to rank cell response to the different
cytokine treatments.

Immunoblot densitometrywas reportedwith the 95% confidence
intervals and analyzed using ANOVAs. We reported Bonferroni cor-
rections for multiple comparisons. Significance was set at P � 0.05.

Results

Response of normal meniscus to pro-inflammatory factors

Normal meniscus cell cultures were stimulated with pro-
inflammatory factors to evaluate alterations in extracellular matrix
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gene expression. Meniscus cells were stimulated with IL-1b, IL-6, or
FnF. FnFs are found in the synovial fluid and extracellular matrix of
arthritic joints and are known to induce cartilage degradation but
have not been studied with meniscus19e22. The pro-inflammatory
stimuli significantly increased expression of multiple matrix-
degrading enzymes, including many of the primary MMPs respon-
sible for degradation of both meniscus and cartilage matrix; how-
ever, the specific MMPs expressed varied according to the stimulus
(Table I). All three stimuli increased expression of MMP-1, while IL-
1b also stimulated MMP-2 and MMP-10 expression and IL-6 stim-
ulated MMP-3 and ADAMTS1 expression. FnF produced the most
significant increase in MMP-1 as well as MMP-2, MMP-3, MMP-8,
MMP-10, and MMP-13. FnF also stimulated expression of the cell
adhesion molecules VCAM-1 and a1- and a2-integrins, while IL-1b
stimulated a1- and b1-integrin expression (Table I). IL-6 uniquely
stimulated b2-integrin expression. Matrix proteins decreased by FnF
include collagen VIa1, versican, thrombospondins-1 and -3 and
connective tissue growth factor (CTGF; Table I) while collagen VIIa1
and lamininb3 were increased. In contrast, IL-1b increased expres-
sion of catenins including a1, b1, and d2 as well as hyaluronan
synthase-1 which was also increased by FnF. IL-6 uniquely down-
regulated collagen XVIa1 and versican and similar to FnF
decreased thrombospondin-1. Genes on the array which did not
have a significant change in response are shown in Table SII.

After identifying alterations in extracellular matrix gene
expression, we examined changes in expression and production of
selected MMPs that could be secreted and cause local tissue
destruction. For this set of experiments, we also included stimula-
tion with TGF-a. TGF-a is a less well studied cytokine in osteoar-
thritis pathogenesis, but is implicated in articular cartilage
degradation23,24. We compared the effects of cytokine stimulation
on MMP-1 and MMP-3 expression in normal and osteoarthritic
meniscus cell cultures. Cytokine stimulation significantly increased
meanMMP-1 (P< 0.001) andMMP-3 (P¼ 0.006) gene expression in
meniscus cultures [Fig. 1(A)]. MMP-1 and MMP-3 gene expression
was significantly greater at 24 h than 6 h (respectively P¼ 0.014 and
P¼ 0.005), and for clarity, the 24 h time points are shown [Fig. 1(A)].
Table I
Quantitative real-time PCR array for selected extracellular matrix related genes

Gene Gene product

ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1
COL16A1 Collagen, type XVI, alpha 1
COL6A1 Collagen, type VI, alpha 1
COL7A1 Collagen, type VII, alpha 1
VCAN Versican
CTGF Connective tissue growth factor
CTNNA1 Catenin (cadherin-associated protein), alpha 1, 102 kDa
CTNNB1 Catenin (cadherin-associated protein), beta 1, 88 kDa
CTNND2 Catenin (cadherin-associated protein), delta 2 (neural plakophilin-related
HAS1 Hyaluronan synthase-1
ITGA1 Integrin, alpha 1
ITGA2 Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor)
ITGB1 Integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 inc
ITGB2 Integrin, beta 2 (complement component 3 receptor 3 and 4 subunit)
LAMB3 Laminin, beta 3
MMP-1 Matrix metallopeptidase 1 (interstitial collagenase)
MMP-10 Matrix metallopeptidase 10 (stromelysin 2)
MMP-13 Matrix metallopeptidase 13 (collagenase 3)
MMP-2 Matrix metallopeptidase 2 (gelatinase A, 72 kDa gelatinase, 72 kDa type I
MMP-3 Matrix metallopeptidase 3 (stromelysin-1, progelatinase)
MMP-8 Matrix metallopeptidase 8 (neutrophil collagenase)
THBS1 Thrombospondin-1
THBS3 Thrombospondin 3
VCAM-1 Vascular cell adhesion molecule 1

Highlighted cells indicate P < 0.05.
MMP-1 expression was significantly increased by IL-1b (P ¼ 0.020),
IL-6 (P ¼ 0.044), and FnF (P < 0.001). FnF (P ¼ 0.001) significantly
increased MMP-3 expression, while the effects of IL-1b trended
toward significance (P ¼ 0.061). At the concentration tested, TGF-a
did not significantly increase MMP-1 (P ¼ 0.998) or MMP-3
(P ¼ 0.992) gene expression. Normal meniscus cells demonstrated
a greater increase in mean MMP-1 expression than osteoarthritic
cells (P ¼ 0.007). The increase in MMP-3 expression did not differ
significantly between the two groups (P ¼ 0.135). Osteoarthritic cell
cultures secreted more MMP-1, MMP-2, and MMP-3 than normal
meniscus cell cultures [Fig. 1(B)].

Matrix-degrading protein production in normal and osteoarthritic
meniscus cells

Protein production of selected MMPs was evaluated by immu-
noblotting. The first set of normal primary meniscus cell cultures
were stimulated with IL-1b, IL-6, or TGF-a (Fig. 2). Meniscus cells
significantly increased MMP-1 production following stimulation by
IL-1b [18.3 fold (�8.65 to 45.2)], IL-6 [24.1 fold (�8.61 to 56.7)], and
TGF-a [5.78 fold (1.71e9.86)] (Fig. 2, P ¼ 0.0091). MMP-3 was also
significantly increased by stimulation with IL-1b [5.24 fold (�2.56
to 13.0)], IL-6 [3.70 fold (�0.47 to 7.86)], and TGF-a [2.46 fold
(�0.59 to 5.52)] [Fig. 1(B), P ¼ 0.021]; MMP-2 was used as a gel
loading control since its levels in conditionedmediawere not found
to change with stimulation.

Similar to the first set of experiments, FnF treated meniscus
cultures exhibited increased MMP-1 and MMP-3 [Fig. 1(B)]. MMP-1
production significantly increased in response to IL-1b, IL-6 and FnF
stimulation with respective fold increases of 17.1 (�21.7 to 55.9),
21.4 (�10.7 to 53.5), and 21.9 (�5.58 to 49.4) [Fig. 1(B), P ¼ 0.013].
Stimulation increased MMP-3 as well: IL-1b, 2.76 fold (0.96e4.56);
IL-6, 3.41 fold (0.52e6.31); and FnF, 3.45 fold (0.66e5.30) (Fig. 2,
P¼ 0.027). Normal meniscus cells also producedMMP-13; however,
the response only trended to statistical significance (P ¼ 0.095).

Immunoblot analysis of osteoarthritis meniscus cell MMP pro-
duction demonstrated significant responses to cytokine
Fragmin IL-1b IL-6

P value Fold
change

P value Fold
change

P value Fold
change

0.7073 1.06 0.7195 �1.13 0.0152 2.81
0.0654 �1.61 0.9925 �1.04 0.0450 �2.06
0.0398 �2.84 0.4808 �1.99 0.2551 �2.51
0.0355 20.90 0.0686 19.37 0.2131 6.80
0.0002 �5.35 0.4973 �1.28 0.0421 �1.89
0.0239 �12.85 0.2830 �5.55 0.1364 �5.31
0.2049 1.18 0.0044 1.49 0.1672 1.36
0.8528 �1.01 0.0335 1.64 0.7983 �1.27

arm-repeat protein) 0.1555 2.87 0.0441 �2.44 0.9589 �1.38
0.0283 4.58 0.0374 7.64 0.2945 1.78
0.0033 1.86 0.0309 2.12 0.9016 �1.30
0.0452 4.90 0.0547 3.11 0.3196 1.46

ludes MDF2, MSK12) 0.1927 1.36 0.0452 1.86 0.3471 1.27
0.2652 4.34 0.0839 5.92 0.0196 7.27
0.0279 4.98 0.0910 9.54 0.1558 2.39
0.0000 27.56 0.0204 11.95 0.0064 15.42
0.0077 36.91 0.0234 18.83 0.0917 4.96
0.0058 3.53 0.0856 4.08 0.1497 2.65

V collagenase) 0.0055 3.30 0.0290 3.09 0.0965 1.75
0.0000 11.92 0.0805 3.75 0.0344 4.84
0.0068 8.19 0.1595 3.46 0.3536 10.27
0.0104 �4.14 0.1186 �2.89 0.0474 �2.70
0.0021 �6.29 0.2002 �1.77 0.1384 �2.20
0.0131 2.23 0.4385 1.50 0.3202 1.95



Fig. 1. Response of normal and osteoarthritic meniscus cells to pro-inflammatory stimulation. (A) MMP-1 and MMP-3 gene expression in meniscus cells. Primary normal and osteo-
arthritic cell cultures were stimulated with IL-1b (10 ng/ml), IL-6 (10 ng/ml plus 25 ng/ml sIL6R), TGF-a (20 ng/ml) or FnF (1 mM) and cells were harvested 24 h after stimulation (MMP-
1, n ¼ 6 normal and osteoarthritic unique donors; MMP-3, n¼ 4 normal and n¼ 5 osteoarthritic unique donors) [MMP-1: *P ¼ 0.020 (IL-1b), P ¼ 0.044 (IL-6), ***P < 0.001 (FnF); MMP-
3: ***P < 0.001 (FnF) significant increases vs unstimulated control]. All real-time PCR data was normalized to internal control (unstimulated) for accurate full change comparisons.
Error bars represent 95% confidence intervals. (B) MMP-1 and MMP-3 immunoblots from normal and osteoarthritic meniscus primary cultures (representative blots from n ¼ 4 unique
donors). Conditioned media from unstimulated control samples from normal and osteoarthritic meniscus cultures was probed for MMP-1, MMP-2, and MMP-3.
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stimulation. Densitometry measurements demonstrated signifi-
cant MMP-1 increases of 1.43 (0.72e2.14), 1.65 (1.00e2.29), 1.40
(0.59e2.22) and 4.54 (�5.85 to 14.9) for IL-1b, IL-6, TGF-a and FnF
stimulation, respectively (P ¼ 0.007, n ¼ 5 unique donors). MMP-3
increased significantly with 2.67 (0.42e4.93) change for IL-6 and
1.58 (1.03e2.14) for IL-1b, and increases of and 1.86 (0.81e2.91) for
TGF-a and 1.13 (1.01e1.25) for FnF (P ¼ 0.001, n¼ 5 unique donors).
Subgroup analysis identified IL-6 as a more potent stimulus for
MMP-1 and MMP-3 at the concentration tested (P < 0.05). MMP-8
production responded to cytokine stimulation but was more vari-
able (P ¼ 0.108) than MMP-1 and -3. All osteoarthritic menisci
produced some MMPs without stimulation, but some severely
osteoarthritic meniscus cultures were unable to be further stimu-
lated to increase MMP production and were not included in the
densitometry analysis (n ¼ 3, grade 4; data not shown). Normal
menisci increased their MMP-1 production in response to cytokine
stimulation more than osteoarthritic menisci (P ¼ 0.003), but
MMP-3 production did not reach statistical significance (P¼ 0.068).
Unlike normalmenisci, cytokine stimulation did not increaseMMP-
13 production in osteoarthritic meniscus cells (Fig. 3).

Osteoarthritic meniscus cells were also compared to osteoar-
thritic chondrocytes obtained from the same donor to determine if
the two cell types differed in their response to cytokine stimulation.
As shown in the MMP protein arrays [Fig. 3(A)], human osteoar-
thritic meniscus cultures responded to cytokine stimulation with
qualitative increases in secretion of MMP-1, MMP-3 and MMP-8.
Osteoarthritic chondrocytes demonstrated a different MMP pro-
file with greater MMP-13 production [Fig. 3(A)]. The array results
were confirmed with immunoblots, which demonstrated that
osteoarthritic menisci responded to IL-1b, IL-6 and TGF-a with
increased MMP-1 and MMP-3 secretion [Fig. 3(B)]. While both
osteoarthritic chondrocytes and menisci produced MMP-1 and
MMP-3, chondrocytes qualitatively secreted more MMP-13 and
ADAMTS-5 than osteoarthritic meniscus cells [Fig. 3(B)].

NF-kB pathway associated expression in normal meniscus cells

Since FnF increased the greatest number of genes in the
extracellular-matrix array (Table I) and we previously
demonstrated that FnF stimulated NF-kB pathway genes in chon-
drocytes21, we selected FnF stimulation to evaluate the NF-kB
family in meniscal cells. Twenty-six genes out of 84 on the NF-kB
family array were significantly increased by FnF and only one, AGT,
was decreased (Table II). FnF stimulation increased expression of
NF-kB components (NFkB1, NFkB1A, and Rel) and many target
genes, including cytokines (IL-1a and -1b, IL-6, and IL-8) and che-
mokines (CSF1, CXCL1, and CXCL2). FnF additionally increased the
expression of both receptors and ligands in the tumor necrosis
factor (TNF)-a family (CD40, Fas, LTB, TNFSF10 and TRAF2) as well
as CD80 and CD83.

Treatment with FnF in the presence of the NF-kB inhibitor
hypoestoxide significantly altered the expression of a number of
genes. The chemokines C4A and CCL2 were decreased as were the
transcription factors STAT3 and EGR2. FnF with hypoestoxide
decreased expression of the enzymes MAP2K6, NQO1, NR4A2, and
PLAU. The receptor expression for IL1R2 was decreased while IL2RA
was increased. Additional gene alterations that were not statisti-
cally significant may be found in Table SIII.

Since FnF increased cytokine and chemokine gene expression in
the NF-kB arrays, we used a protein array and tested conditioned
media from FnF and cytokine treated cells to examine meniscus
cytokine and chemokine production. Two different donors and
exposures are shown to highlight the differences (Fig. 4). All three
pro-inflammatory stimuli increased production of CXCL1, CXCL2,
CXCL3 (identified by the GRO antibody), CXCL5, CCL8 (MCP-2), CCL7
(MCP-3), GM-CSF, and MIP-3a. FnF and IL-1b increased IL-6 and
CCL2 production. FnF and IL-6 increased IL-1b, and MIP-1b. FnF
increased IL-1awhile IL-1b uniquely increased MIF, and finally IL-6
increased IL-7. Since the arrays contained antibodies to detect IL-1b
and IL-6, it is unclear if they increased their respective production
or the blots were detecting the cytokines added to stimulate the
cells.

To further examine FnF stimulation of the NF-kB pathway, we
assessed p65 phosphorylation following stimulation by FN-F as
well as IL-1b þ IL-6. Phosphorylation of p65 increased following
treatment with the pro-inflammatory factors and the addition of
the NF-kB inhibitor hypoestoxide reduced p65 phosphorylation
following stimulation with FnF [Fig. 5(A)]. The overall level of



Fig. 2. MMP secretion from normal meniscus cells in response to cytokine stimulation. Normal meniscus primary cell cultures were stimulated with IL-1b (10 ng/ml), IL-6 (10 ng/ml
plus 25 ng/ml sIL6R), TGF-a (20 ng/ml) or FnF (1 mM) (n ¼ 4 unique donors) [mean increase in MMP-1 (P ¼ 0.013); MMP-3 (P ¼ 0.013)]. Cells were harvested 24 h after stimulation.
Conditioned media was collected at 24 h after stimulation and immunoblotted for MMP-1, -3, or -13. MMP-2 levels did not change and served as an additional loading control.
Densitometry analysis is shown at the right. Error bars represent 95% confidence intervals.
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phosphorylated-p65 was statistically significant (P ¼ 0.007), but
hypoestoxide’s effect on IL-1b in combinationwith IL-6 stimulation
was more variable. Additional cell cultures were also harvested for
RNA and conditioned media analysis after cytokine stimulation and
hypoestoxide inhibition. Stimulation treatment significantly
altered MMP-1 (P < 0.001) and MMP-3 (P ¼ 0.001) expression
[Fig. 5(B)]. Within the group, treatment with FnF or IL-1b þ IL-6
significantly increased expression (MMP-1 P < 0.01 for both
hypoestoxide groups; MMP-3 P < 0.05 for both hypoestoxide
groups), while mean change following treatment in combination
with hypoestoxide did not significantly differ from unstimulated
control. The same trend was identified for MMP-1 and MMP-3
protein production [Fig. 5(C)].

The effect of pro-inflammatory mediators on stimulation of p65
was further characterized by performing a nuclear translocation
analysis (Fig. 6). A time course experiment demonstrated a time
dependent increase in FnF stimulated p65 phosphorylation in the
cytosol and nucleus (Fig. 6). Importantly, the amount of
phosphorylated-p65 in the nucleus increased over control cells
peaking at 30 min and declining to basal levels by 90 min.
Pretreatment with hypoestoxide reduced p65 phosphorylation and
nuclear translocation (Fig. 6).

Discussion

The clinical importance of the meniscus in osteoarthritis
development is well documented1e6; however, meniscus pathol-
ogy in osteoarthritis is largely attributed to mechanically mediated
loss of structural integrity5,12,17,25,26. These biomechanical stress
factors may lead to “osteoarthritis in the meniscus” which is pro-
posed to be responsible for meniscus MRI changes observed during
the early osteoarthritis development27. Recent evidence suggests
that the meniscus may have a more biologically active role in the
complicated whole joint pathology of osteoarthritis11,15,18,28,29.
Many of these studies use animal meniscus specimens and are
limited in their translation to human osteoarthritis pathogenesis30.
Our data using cultured human meniscal tissue expands upon
previous gene expression reports10,11,18 using RNA isolated from



Fig. 3. Comparison of osteoarthritic meniscus and cartilage cells in response to cytokine stimulation. (A) Antibody MMP Array with conditioned media from osteoarthritic meniscal
cells and chondrocytes following 24 h stimulation with IL-1b (10 ng/ml) or IL-6 (10 ng/ml plus 25 ng/ml sIL6R). All protein arrays were developed simultaneously to enable direct
comparisons and each protein on the array is presented in duplicate. (n ¼ 1, þ indicates positive control) (B) MMP-1, -3, -8, and -13 and ADAMTS-5 production in osteoarthritic
chondrocytes and meniscus cells. Immunoblot analysis of conditioned media from unstimulated controls (Ctl) vs with IL-1b (10 ng/ml), IL-6 (10 ng/ml plus 25 ng/ml sIL6R), TGF-a
(20 ng/ml) stimulated cultures (n ¼ 4 matched donors).
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normal and osteoarthritic human meniscus and further support a
role for meniscus involvement in osteoarthritis pathogenesis.

The first objective was to identify extracellular matrix and MMP
expression patterns in normal meniscus following pro-
inflammatory stimulation. Early aberrations in cytokine signaling
are believed to be responsible for propagating the reactive and
degradative responses in joint tissues that ultimately lead to oste-
oarthritis7e10,18,28,31,32. Normal meniscus cells stimulated with pro-
inflammatory factors vigorously increased their catabolic factor
expression and protein production. The pattern of normal meniscus
cell MMP production was consistent with that of osteoarthritic
meniscus cells, although the diseased cells were less dynamic in
their response. Normal meniscus cells were highly responsive to
FnF, IL-1b and IL-6, while osteoarthritic menisci were more
responsive to IL-6 then IL-1b at the concentrations tested. Normal
meniscus cells also responded more quickly to stimulation than
osteoarthritic meniscus cells, as evidenced by significantly greater
increases in MMP expression at 6 h after stimulation than the
osteoarthritic cells. This difference could be related to alterations in
receptor density or inflammatory pathways in osteoarthritic cells.
Meniscus cells produced a complementary pattern of MMP pro-
duction to osteoarthritic chondrocytes in response to pro-
inflammatory stimulation.

Alterations of MMP expression are important in osteoarthritis
development and progression. MMP-1 degrades collagen type I
which is the primary constituent of meniscal extracellular matrix33.
Increased MMP-1 activity may damage the structural integrity of
the meniscus. MMP-3 (stromelysin-1) production is similarly
important because it is upregulated in articular cartilage in early
osteoarthritis9,31. MMP-3 cleaves multiple matrix proteins and



Table II
Quantitative real-time PCR array for NF-kB family genes and targets

Gene Gene product FnF FnF þ HE FnF vs FnF þ HE

P value Fold change P value Fold change P value Fold change

AGT Angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 0.0106 �3.12 0.0015 �5.16 0.2088 �1.65
BCL2A1 BCL2-related protein A1 0.0142 11.18 0.3721 1.40 0.0289 �7.99
BIRC3 Baculoviral IAP repeat containing 3 0.0364 38.12 0.4267 1.65 0.0393 �23.12
C4A Complement component 4A (Rodgers blood group) 0.1233 �1.56 0.0006 �3.03 0.1131 �1.95
CCL2 Chemokine (CeC motif) ligand 2 0.6597 1.27 0.0097 �23.34 0.0002 �29.67
CCND1 Cyclin D1 0.0050 2.25 0.3924 �1.58 0.0024 �3.56
CD40 CD40 molecule, TNF receptor superfamily member 5 0.0308 1.73 0.4231 1.30 0.9873 �1.33
CD80 CD80 molecule 0.0039 6.51 0.3328 1.79 0.0089 �3.63
CD83 CD83 molecule 0.0019 5.50 0.1925 1.72 0.0048 �3.20
CDKN1A Cyclin-dependent kinase inhibitor 1A (p21, Cip1) 0.0272 1.39 0.0003 2.59 0.0026 1.86
CFB Complement factor B 0.0393 2.07 0.3574 �1.54 0.0044 �3.20
CSF1 Colony stimulating factor 1 (macrophage) 0.0378 6.08 0.6138 1.08 0.0410 �5.61
CXCL1 Chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) 0.0348 6.11 0.0882 �23.97 0.0276 �146.25
CXCL2 Chemokine (C-X-C motif) ligand 2 0.0295 13.10 0.0636 �17.20 0.0260 �225.32
EGFR Epidermal growth factor receptor 0.5638 1.05 0.0004 �3.19 0.0250 �3.35
EGR2 Early growth response 2 0.0565 2.51 0.0118 4.55 0.2146 1.81
F3 Coagulation factor III (thromboplastin, tissue factor) 0.0065 14.89 0.0205 1.76 0.0082 �8.46
FAS Fas (TNF receptor superfamily, member 6) 0.0136 2.64 0.9615 1.04 0.0120 �2.53
ICAM-1 Intercellular adhesion molecule 1 0.0015 8.72 0.0004 2.67 0.0052 �3.26
IL1A Interleukin 1, alpha 0.0103 151.33 0.5790 1.17 0.0107 �129.68
IL1B Interleukin 1, beta 0.0107 115.81 0.5342 �1.43 0.0145 �165.80
IL1R2 Interleukin 1 receptor, type II 0.2322 �2.48 0.0084 �6.14 0.2782 �2.48
IL1RN Interleukin 1 receptor antagonist 0.0008 46.84 0.6667 1.07 0.0008 �43.62
IL2RA Interleukin 2 receptor, alpha 0.1029 3.26 0.0250 2.44 0.3611 �1.34
IL-6 Interleukin 6 (interferon, beta 2) 0.0140 9.58 0.1011 �19.62 0.0095 �188.06
IL-8 Interleukin 8 0.0180 58.84 0.2360 4.10 0.0262 �14.38
IRF1 Interferon regulatory factor 1 0.0513 12.02 0.0067 2.51 0.0740 �4.80
LTB Lymphotoxin beta (TNF superfamily, member 3) 0.0001 8.27 0.0067 �11.02 0.0000 �90.92
MAP2K6 Mitogen-activated protein kinase kinase 6 0.1348 �1.85 0.0103 �10.14 0.0493 �5.48
NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 0.0054 3.24 0.7798 �1.00 0.0094 �3.25
NFKBIA Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 0.0427 5.49 0.8604 �1.01 0.0400 �5.53
NQO1 NAD(P)H dehydrogenase, quinone 1 0.2707 1.85 0.0195 3.31 0.2403 1.79
NR4A2 Nuclear receptor subfamily 4, group A, member 2 0.1557 1.70 0.0089 �6.08 0.0066 �10.33
PDGFB Platelet-derived growth factor beta polypeptide 0.5847 1.20 0.0576 �7.60 0.0208 �9.14
PLAU Plasminogen activator, urokinase 0.1960 1.97 0.0380 �9.97 0.0115 �19.59
REL V-rel reticuloendotheliosis viral oncogene homolog (avian) 0.0463 3.13 0.7859 1.06 0.0572 �2.95
RELA V-rel reticuloendotheliosis viral oncogene homolog A (avian) 0.0526 2.51 0.2633 �1.46 0.0196 �3.67
SOD2 Superoxide dismutase 2, mitochondrial 0.0034 2.92 0.4788 1.16 0.0144 �2.51
STAT3 Signal transducer and activator of transcription 3 (acute-phase response factor) 0.8243 �1.13 0.0346 �2.20 0.1204 �1.94
TNFSF10 TNF (ligand) superfamily, member 10 0.0274 1.70 0.0013 �2.95 0.0024 �5.00
TRAF2 TNF receptor-associated factor 2 0.0201 3.73 0.0913 2.39 0.3195 �1.56

Highlighted cells indicate P < 0.05.
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activates other MMPs, including MMP-131. The disease processes
we observed through up-regulation and production of MMPs are
likely present in the intact meniscus. This conclusion is supported
by studies demonstrating increased MMP-3 and aggrecanase pro-
duction in immunohistochemical analysis of partial menisectomy
specimens15, increased MMP-1 activity, proteoglycan release and
nitric oxide release following IL-1b treatment in healthy pig
meniscus explants34, and increased expression of ADAMTS and
MMPs in ovine meniscus following cytokine stimulation18. Addi-
tional catabolic changes were identified with extracellular matrix
analysis. A more dynamic gene response for MMP-8 was identified
in normal meniscus cells, along with MMP-10. MMP-10 was re-
ported in the fibrocartilaginous nucleus pulposus and was associ-
ated with increased gross and histological degeneration, pain, and
increased IL-1 and substance P35.

Pro-inflammatory stimulation also increased MMP-13 gene
expression and production in normal meniscus cells. Our findings
are consistent with a report of increased MMP-13 following IL-1a
treatment in normal inner meniscus and articular chondrocytes18.
Increased MMP-13 gene expression in stimulated normal meniscus
cells is also congruent with reported MMP-13 expression in partial
meniscectomy specimens11, and the inner region of the meniscus
would be expected to constitute the majority of cells in partial
meniscectomy. The meniscus cell phenotype is reported to become
increasingly chondrocytic in the inner zones of the meniscus18,33,36.
The inner, avascular, region is likely the first section to deteriorate
during the development of osteoarthritis and may explain in part
why we did not see significant increases in MMP-13 production in
our osteoarthritic meniscus cells which would likely be mainly
from the outer region where MMP-1 predominates over MMP-13.

Pro-inflammatory factors also altered expression of cell adhe-
sion proteins. Alterations in the meniscus integrin receptor
expression would be expected to alter cellematrix interactions as
previously shown for chondrocytes37 and is implicated in osteoar-
thritis pathogenesis10. Cell adhesion markers VCAM-1, ICAM-1 and
E-selectin were also increased and were previously demonstrated
to be present in hypertrophic and early osteoarthritic synovium
and is involved in inflammatory cell recruitment to the syno-
vium32,38. ICAM-1 was specifically identified as increased in early
osteoarthritis, while VCAM-1 was shown to be predictive of joint
replacement for severe arthritis32,39. Pharmacologic reductions of
these molecules for early to mid-stage osteoarthritis of the knee
was associated with improvements of pain and function40.

Lymphotoxin b and GM-CSF were both increased and although
they are primarily linked to rheumatoid arthritis, they have also
been noted in the osteoarthritic synovium41e43. Future investigation



Fig. 4. Protein array of conditioned media from normal meniscus following pro-inflammatory stimulation. Conditioned media from normal meniscus cells 24 h after stimulation
with either FnF (1 mM), IL-1b (10 ng/ml) or IL-6 (10 ng/ml plus 25 ng/ml sIL6R). The first donor is shownwith shorter (A) exposure and the second donor with a longer exposure (B)
to detect less abundant cytokines.
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may link these cytokines to the more fibroblastic cell phenotype in
the meniscus or to inflammatory cell recruitment. Catabolic
expression was accompanied by a notable decrease in expression of
the anabolic factor CTGF. CTGF was recently indentified in a rabbit
model for promoting collagen production and healing of meniscus
defects44. The combination of abnormal cell recruitment and
decreased anabolic factors could easily compromise wound healing.

Meniscus cells can be stimulated to produce matrix-degrading
enzymes which could impact neighboring cartilage matrix, but the
tissue interaction is likely part of a more dynamic signaling
network. In addition to the catabolic factors above, meniscus
responded to pro-inflammatory factors with increases in cytokine
and chemokine expression and production in a manner similar to
chondrocytes22. Multiple interleukins, including IL-1b and IL-6 that
were used in our stimulation experiments, were increased in both
expression and production. IL-1b was recently reported to be
increased in osteoarthritic synovial fluid45. Additionally, treatment
of articular chondrocytes and meniscus explants with IL-1a and IL-
1b was found to increase cartilage and meniscus catabolic activity
through increased MMP activity and nitric oxide release45. Che-
mokines CXCL1, CXCL2, CXCL3, CCL8 (MCP-2), CCL7 (MCP-3), and
CXCL6 (GCP-2) were increased and may contribute to the devel-
opment of inappropriate inflammatory cycles after injury9,28. Our
results support recently reported findings in an analysis of gene
expression in meniscus tears, which found increased expression of
IL-1b, ADAMTS-5, MMP-1, MMP-9, MMP-13, and NFkB2 in patients
with meniscus tears younger than 4011. Cytokine and chemokine
expression (including IL-1b, TNF-a, MMP-13, CCL3, and CCL3L1)
were greater in patients with a meniscus tear and concomitant ACL
tear which indicates a more severe injury11. Furthermore, we
identified a more expansive list of cytokine and chemokine alter-
ations and proposed that these alterations are at least in part
mediated by the NF-kB pathway.

The NF-kB pathway is well studied in osteoarthritic chon-
drocytes. FnF stimulation of NF-kB increases chondrocyte cytokine
and chemokine production9,22,28,46. In meniscus cells, FnF and
cytokine directed p65 phosphorylation suggests that the NF-kB
pathwaymay be responsible for increased cytokine and chemokine
production. Injured meniscus previously demonstrated elevated
NF-kB phosphorylation identified by immunohistochemistry16.

Increased production of inflammatory factors may act in both
autocrine and paracrine fashion, but these may also act on sur-
rounding tissues through the synovial fluid. This mechanism for
joint destruction is supported by a number of studies identifying
these factors as increased in the disease state and detailing their
deleterious effects on cartilage, bone and the synovium9,28,32,
which would likely suppress reparative cell functions and propa-
gate a loss of matrix integrity. Additionally, these findings may
better explain the higher failures in meniscus repair in older pa-
tients4,11,47. Older patients with a previous meniscus injury are
likely producing increasedmatrix-degrading enzymes as a function
of both the initial injury and age, and both factors are likely to
contribute to disease progression.

Our study carries common limitations of laboratory models.
Primary cell culture was the most efficient and precise model to
analyze both protein and RNA responses to stimulation; however,



Fig. 5. Response of normal meniscus cells to pro-inflammatory factors with and
without the NF-kB inhibitor hypoestoxide. Cells were stimulated for 30 minwith either
FnF (1 mM) or IL-1b (10 ng/ml) and IL-6 (10 ng/ml plus 25 ng/ml sIL6R) with or without
hypoestoxide (HE, 25 mM), and cell lysates prepared. Lysates were then probed for
phosphorylated-p65 (active form). Immunoblots were then probed for total-p65 and
followed by b-actin as the loading control (n ¼ 5 individual donors). Densitometric
analysis identified significant increases in p65 phosphorylation (P ¼ 0.007). The blots
were stripped and re-probed for total-p65 and b-actin. Total-p65 was present in lanes
with minimal phospho-p65. (B) Cells were harvested for RNA collection 24 h after
stimulation with either with IL-1b (10 ng/ml) and IL-6 (10 ng/ml plus 25 ng/ml sIL6R)
or FnF (1 mM) with and without the inhibitor hypoestoxide (HE, 25 mM). All real-time
PCR data normalized to internal control (unstimulated cells) for accurate fold change
comparisons. MMP-1 and MMP-3 expression significantly changed with treatment
groups [MMP-1 overall P < 0.001, **P ¼ 0.01; MMP-3 overall P ¼ 0.001; *P ¼ 0.04].
Error bars represent 95% confidence intervals (n ¼ 5 unique donors). (C) The condi-
tioned media was also probed for MMP production (n ¼ 5 unique donors).

Fig. 6. Effect of fibronectin fragment stimulation on nuclear translocation of p65 in
normal meniscus cell culture. Time course analysis at 15, 30, 45, 60, and
90 min demonstrating nuclear (N) and cytoplasmic (C) fractions of FnF (1 mM) treated
cells with and without hypoestoxide (HE) pretreatment. Nuclear and cytoplasmic cell
fractions were immunoblotted for phosphorylated-p65 (active form), total-p65, Lamin
B (nuclear protein marker), lactate dehydrogenase (LDH, cytosolic marker) and b-actin
(total protein marker found in both fractions). Blots shown are representative of n ¼ 4
unique donors.
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our findings should be interpreted with the understanding that cell
cultures may not directly mimic in vivo cell behavior. This study
sought to identify cell alterations in normal meniscus tissue that
may lead to the development of osteoarthritis. Future studies may
further explore the NF-kB pathway as well as the role of MAP ki-
nases and disease progression in an animal model, which was
beyond the scope of this manuscript. Another limitation of the study
is the inherent variability in the state of the meniscus disease at the
time of specimen acquisition. TKAs are most frequently performed
for the indication of pain and functional limitation from osteoar-
thritis, but the indication encompasses a range of tissue destruction
ranging frommoderate to severe cartilage eburnation andmeniscus
degradation. The larger standard deviation in MMP expression and
production in osteoarthritic tissue relative to normal may be
partially attributable to the varied disease state. We opted to
examine the entire cell population in the meniscus to elucidate
differences between the normal meniscus and the osteoarthritis
disease state. Additional studies have examined the differences in
meniscus cell type18,30, so we believe our characterization of normal
and osteoarthritis human meniscus may add to a better under-
standing of osteoarthritis pathogenesis following meniscal injury.

The role of the meniscus in osteoarthritis likely extends beyond
the mechanical compromise of the meniscus structure to encom-
pass biologic interactions. Meniscus secretion of inflammatory
factors and matrix-degrading enzymes likely contributes to the
development of pathology. While the full cell mechanism was not
characterized, we believe that the increased expression of MMPs,
cytokines, and chemokines in response to pro-inflammatory factors
contributes to osteoarthritis pathogenesis in the meniscus and
articular cartilage. The ultimate goal of this research is to identify
factors contributing to early pathology in an effort to prevent, or at
least attenuate, the development of osteoarthritis.
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